首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   10616篇
  免费   1485篇
  国内免费   2075篇
化学   11102篇
晶体学   141篇
力学   327篇
综合类   84篇
数学   56篇
物理学   2466篇
  2024年   22篇
  2023年   163篇
  2022年   336篇
  2021年   496篇
  2020年   746篇
  2019年   569篇
  2018年   401篇
  2017年   403篇
  2016年   487篇
  2015年   489篇
  2014年   551篇
  2013年   951篇
  2012年   728篇
  2011年   596篇
  2010年   450篇
  2009年   582篇
  2008年   581篇
  2007年   598篇
  2006年   644篇
  2005年   553篇
  2004年   564篇
  2003年   486篇
  2002年   360篇
  2001年   283篇
  2000年   282篇
  1999年   210篇
  1998年   180篇
  1997年   191篇
  1996年   181篇
  1995年   200篇
  1994年   151篇
  1993年   143篇
  1992年   133篇
  1991年   77篇
  1990年   63篇
  1989年   47篇
  1988年   49篇
  1987年   51篇
  1986年   23篇
  1985年   28篇
  1984年   19篇
  1983年   11篇
  1982年   19篇
  1981年   15篇
  1980年   19篇
  1979年   13篇
  1978年   6篇
  1977年   5篇
  1976年   8篇
  1973年   5篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Pd‐initiated polymerization and oligomerization of diazo compounds containing a dialkoxyphosphinyl group are described. Polymerization of 2‐dialkoxyphosphinylethyl diazoacetates with π‐allylPdCl‐based initiating systems afforded C? C main chain polymers bearing phosphonate on each main chain carbon atom. The quantitative transformation of the side chain phosphonate to phosphonic acid resulted in the formation of water soluble polymers having the acid groups accumulated around their main chains, although the carbonyl ester linkage in the side chain was cleaved via intramolecular acid‐assisted hydrolysis in water at 80 °C. Pd‐initiated oligomerization of diethyl diazomethylphosphonate yielded an oligomeric product bearing diethoxyphosphiny groups directly attached to its main chain carbons, with unexpected incorporation of azo group in the main chain framework. Hydrolysis of the phosphonate of the oligomer afforded a water‐soluble product, which was revealed to show higher proton conductivity than poly(vinylphosphonic acid) under certain conditions. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1742–1751  相似文献   
32.
Snake venom hyaluronidases known as “spreading factor” are not extensively studied. Recently, it is argued that beyond its role as a spreading factor, venom hyaluronidase (HYL) deserves to be explored as a possible therapeutic target for inhibiting the systemic distribution of venom/toxins and also for minimizing local tissue destruction. In this context, in the present study, a low-molecular weight HYL has been isolated from Bungarus caeruleus (Indian krait) venom by single step chromatography on HPLC system. The apparent molecular weight determined by SDS-PAGE is 14 ± 2 kDa, as confirmed by zymogen study and LC–MS as well. The enzyme had optimal pH 6 and temperature 37°C. The Michaelis–Menten constant (Km) was found to be 8.48 µg/mL at 37°C. The activity of purified enzyme was completely inhibited by Ba2+ metal ion and N-acetyl imidazole group-specific agents. This work yielded a highly active HYL from B. caeruleus the first one to be isolated. Further studies on its pharmacological actions will be interesting to develop lead molecules for better management of snakebite.  相似文献   
33.
The synthesis of a metal–organic framework (UiO‐67) functionalised simultaneously with two different transition metal complexes (Ir and Pd or Rh) through a one‐pot procedure is reported for the first time. This has been achieved by an iterative modification of the synthesis parameters combined with characterisation of the resulting materials using different techniques, including X‐ray absorption spectroscopy (XAS). The method also allows the first synthesis of UiO‐67 with a very wide range of loadings (from 4 to 43 mol %) of an iridium complex ([IrCp*(bpydc)(Cl)Cl]2?; bpydc=2,2′‐bipyridine‐5,5′‐dicarboxylate, Cp*=pentamethylcyclopentadienyl) through a pre‐functionalisation methodology.  相似文献   
34.
An emerging area of homogeneous catalysis is the use of catalysts featuring two closely associated metal sites. This approach complements the traditional focus on single‐site catalysts and makes available new parameters with which to optimize catalytic behavior. Single‐site catalysts are optimized through changing 1) the identity of the metal, and 2) the steric and electronic properties of the ligands. Bimetallic catalysts introduce new optimization parameters such as 3) catalyst nuclearity (mononuclear vs. binuclear), and 4) bimetallic pairing (relative compatibility of two metal sites). In order to harness these new optimization parameters in developing systems, it is necessary to first understand the origin of bimetallic selectivity effects that already have been documented. This Concept article highlights bimetallic effects on the chemo‐, regio‐, and stereoselectivity of catalytic transformations, using selected case studies from the recent literature as illustrative examples.  相似文献   
35.
Carbon‐atom extrusion from the ipso‐position of a halobenzene ring (C6H5X; X=F, Cl, Br, I) and its coupling with a methylene ligand to produce acetylene is not confined to [LaCH2]+; also, the third‐row transition‐metal complexes [MCH2]+, M=Hf, Ta, W, Re, and Os, bring about this unusual transformation. However, substrates with substituents X=CN, NO2, OCH3, and CF3 are either not reactive at all or give rise to different products when reacted with [LaCH2]+. In the thermal gas‐phase processes of atomic Ln+ with C7H7Cl substrates, only those lanthanides with a promotion energy small enough to attain a 4fn5d16s1 configuration are reactive and form both [LnCl]+ and [LnC5H5Cl]+. Branching ratios and the reaction efficiencies of the various processes seem to correlate with molecular properties, like the bond‐dissociation energies of the C?X or M+?X bonds or the promotion energies of lanthanides.  相似文献   
36.
The identification of catalytically active sites (CASs) in heterogeneous catalysis is of vital importance to design and develop improved catalysts, but remains a great challenge. The CASs have been identified in the low‐temperature selective catalytic reduction of nitrogen oxides by ammonia (SCR) over a hollandite manganese oxide (HMO) catalyst with a rod‐shaped morphology and one‐dimensional tunnels. Electron microscopy and synchrotron X‐ray diffraction determine the surface and crystal structures of the one‐dimensional HMO rods closed by {100} side facets and {001} top facets. A combination of X‐ray absorption spectra, molecular probes with potassium and nitric oxide, and catalytic tests reveals that the CASs are located on the {100} side facets of the HMO rods rather than on the top facets or in the tunnels, and hence semi‐tunnel structural motifs on the {100} facets are evidenced to be the CASs of the SCR reaction. This work paves the way to further investigate the intrinsic mechanisms of SCR reactions.  相似文献   
37.
Octahedral iridium(III) complexes containing two bidentate cyclometalating 5‐tert‐butyl‐2‐phenylbenzoxazole ( IrO ) or 5‐tert‐butyl‐2‐phenylbenzothiazole ( IrS ) ligands in addition to two labile acetonitrile ligands are demonstrated to constitute a highly versatile class of asymmetric Lewis acid catalysts. These complexes feature the metal center as the exclusive source of chirality and serve as effective asymmetric catalysts (0.5–5.0 mol % catalyst loading) for a variety of reactions with α,β‐unsaturated carbonyl compounds, namely Friedel–Crafts alkylations (94–99 % ee), Michael additions with CH‐acidic compounds (81–97 % ee), and a variety of cycloadditions (92–99 % ee with high d.r.). Mechanistic investigations and crystal structures of an iridium‐coordinated substrates and iridium‐coordinated products are consistent with a mechanistic picture in which the α,β‐unsaturated carbonyl compounds are activated by two‐point binding (bidentate coordination) to the chiral Lewis acid.  相似文献   
38.
This article deals with the Kumada Catalyst Transfer Polycondensation (KCTP) of 4,7‐dioctylbenzo[2,1‐b:3,4‐b']dithiophene ( BDP‐Oct ) using Ni(II) catalyst or In/cat combination. A combination of MALDI MS, GPC, and 31P NMR spectroscopy is used to reveal the failure of the KCTP of this particular monomer. Intermolecular transfer reactions to monomer appeared to prevent the formation of polymer. This result is remarkable, since isomeric benzo[1,2‐b:4,5‐b']dithiophene polymerizes in a controlled way. The presence of a “non‐aromatic double bond” in annulated monomers is discussed. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 1706–1712  相似文献   
39.
Various aryl‐, alkenyl‐, and/or alkyllithium species reacted smoothly with aryl and/or benzyl ethers with cleavage of the inert C?O bond to afford cross‐coupled products, catalyzed by commercially available [Ni(cod)2] (cod=1,5‐cyclooctadiene) catalysts with N‐heterocyclic carbene (NHC) ligands. Furthermore, the coupling reaction between the aryllithium compounds and aryl ammonium salts proceeded under mild conditions with C?N bond cleavage in the presence of a [Pd(PPh3)2Cl2] catalyst. These methods enable selective sequential functionalizations of arenes having both C?N and C?O bonds in one pot.  相似文献   
40.
An aqueous catalytic method for double C?S bond formations that involves alcohol derivatives, organic halides, and sodium thiosulfate has been developed. A diverse range of functionalized sulfides, including pharmaceutical and biological derivatives, can be obtained in an efficient and eco‐friendly manner under air. The mechanistic studies revealed that this tetrabutylammonium‐iodide‐catalyzed/water‐assisted reaction generated a mercaptan species as the key intermediate.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号